# Study of a new high power spallation target

- Slides: 22

Study of a new high power spallation target concept Yongjoong Lee ESS, Materials, Target Division 5 th High Power Targetry Workshop May 20, 2014

Spallation Target at ESS • 5 MW spallation source – 5 MW (2. 0 Ge. V/2. 5 m. A) proton beam – 2. 86 ms long beam pulse with 14 Hz repetition rate • Rotating tungsten target: – Helium cooled target with water cooled backup 2

Motivation • Looking for a target concept that is based on simple design, with small number of standard type tungsten blocks in large dimensions. • Looking for a target concept that is based on simple cooling flow patterns such that CFD simulations have better predictability. • Demonstration of technical feasibility of a new target concept that is readily adaptable both for helium cooled and water cooled options.

Target configuration used for this study • Five 40 cm long horizontal tungsten slabs with equal thickness 16 mm. 4

Beam power deposition • TDR Baseline (2013): – 5 MW (2. 5 Ge. V/2. 0 m. A) double Gaussian beam with peak current density 53 u. A/cm 2 Target volume Deposited power [k. W] Target I 820 Target II 1374 Target III 594 Total 2788 5

Flow analysis • Helium cooled option – 3 kg/s mass flow rate – 3 bar operation pressure – Total 363 tungsten slabs • Water cooled option – 99 kg/s mass flow rate – 6 bar operation pressure – Total 264 tungsten slabs 6

CFD: Transient helium flow analysis Helium Cooled Target Volume Max Temperature Pre-pulse Max Temperature Post-pulse Temperature Amplitude Target I 728. 5 K 813. 9 K 85. 4 K Target II 736. 0 K 818. 8 K 82. 8 K Target III 432. 8 K 450. 9 K 18. 1 K Pressure Drop 97. 0 k. Pa: Surface and time averaged 7

CFD: Transient water flow analysis Water Cooled Target Volume Max Temperature Pre-pulse Max Temp: Postpulse (Bulk/Surface) Temperature Amplitude Target I 326. 1 K 429. 7 K/393. 6 K 103. 6 K Target II 334. 3 K 428. 9 K/402. 3 K 94. 6 K Target III 310. 0 K 329. 4 K/324. 8 K 19. 4 K Pressure Drop 35. 3 k. Pa: Surface and time averaged 8

Stress analysis: Helium cooled target Helium Cooled Target Volume Max Principal Stress Pre-pulse Post-pulse Stress Amplitude Target I 168 MPa 194 MPa 26 MPa Target II 116 MPa 152 MPa 36 MPa 9

Stress analysis: Water cooled target Water Cooled Target Volume Max Principal Stress Pre-pulse Post-pulse Stress Amplitude Target I 23 MPa 113 MPa 90 MPa Target II 26 MPa 115 MPa 89 MPa 10

Decay heat analysis • Irradiation history: 5 years operation with 5000 hours per year beam on target at 5 MW • Benchmark (MCNPX): 41. 5 k. W in bare W at time zero Dose rate calculated by FLUKA in k. W Cooling time [s] 0 3600 7200 14400 28800 86400 He-cooled Naked W 32. 7 20. 0 18. 6 16. 9 14. 7 9. 9 He-cooled 0. 5 mm Ta-clad W 39. 3 25. 9 24. 3 22. 7 20. 7 16. 1 H 2 O-cooled 0. 5 mm Ta-clad W 42. 9 29. 4 27. 9 26. 2 24. 2 19. 6 D 2 O-cooled 0. 5 mm Ta-clad W 39. 9 26. 6 25. 0 23. 4 21. 4 16. 8 11

Decay heat analysis: Thermal equilibrium • Assumptions: • Normalization factor in decay heat to make it total 47 k. W • Loss of coolant in the target and the monolith, with air ingression • Simple tungsten disc surrounded by monolith shielding blocks with 2 cm air gap between them. 12

Decay heat analysis: Temperatures at thermal equilibrium Coolant Decay Heat at time zero Decay heat at thermal equilibrium Time to reach thermal equilibrium Max. temperature at thermal equilibrium Helium 47 k. W 37 k. W 40 min 912 K Water 62 k. W 38 k. W 270 min 928 K 13

Exothermic heat analysis • Tungsten and tantalum oxidation: exothermic process – W + O 2 -> WO 2, d. H = -589. 7 k. J/W-mol – W + 1. 5*O 2 -> WO 3, d. H = -842. 9 k. J/W-mol – Ta + 1. 25*O 2 -> 0. 5*Ta 2 O 5, d. H = -1023. 0 k. J/W-mol • Literature survey on tungsten and tantalum oxidation in air led to the estimation that the exothermic heat generated on the target surface will reach 10 k. W at 800 C. 14

Thermomechanical properties under flat proton beam profile • New accelerator baseline at ESS: • Rastered beam scanning a rectangular surface on beam window: dx = 140 mm, dy = 32 mm • Beam parameters changed from 2. 5 Ge. V/2. 0 m. A to 2. 0 Ge. V/2. 5 m. A, giving the peak current density on target 55. 8 u. A/cm 2 15

Evolution of target configuration – V 2 • Minimizing tungsten volume: – No visible neutronic penalty by reducing the W slab length from 40 cm to 30 cm and the W slab total thickness from 80 mm to 70 mm – Reduced W slab size reduces decay heat in W by more than 10 %. – Optimizing temperature and stress configurations in W volume. – No through going proton beam shall be allowed! 16

CFD: Transient flow analysis – V 2 Helium Cooled Target: 3 kg/s @ 6 bar Target Volume Max Temperature Pre-pulse Max Temperature Post-pulse Temperature Amplitude Target I 697. 30 753. 47 56. 17 Target II 714. 59 800. 82 86. 23 Pressure Drop 49 k. Pa: Surface and time averaged Water Cooled Target: 99 kg/s @ 6 bar Target Volume Max Temperature Pre-pulse Max Temp: Postpulse Temperature Amplitude Target I 320. 11 K 411. 76 K 91. 65 K Target II 320. 31 K 417. 21 K 96. 90 K Pressure Drop 34 k. Pa: Surface and time averaged 17

Stress analysis: Helium and water cooled targets –V 2 Helium Cooled Target Volume Max von-Mises Stress Pre-pulse Max von-Mises Stress Post-pulse Stress Amplitude Target I 99 MPa 93 MPa -6 Mpa (30 Mpa) Target II 68 MPa 125 MPa 57 Mpa (60 Mpa) Water Cooled Target Volume Max von-Mises Stress Pre-pulse Max von-Mises Stress Post-pulse Stress Amplitude Target I 10 MPa 70 MPa 60 MPa Target II 12 MPa 104 MPa 92 MPa 18

Thermal and mechanical analysis: Beam entrance window • Each of the 33 sectors could be considered as an 150 k. W spallation target. Maximum Temperatures in Beam Window Pre-pulse Post-pulse Temp. Amplitude Helium Cooled Target 457. 87 K 485. 71 K 27. 84 K Water Cooled Target 321. 63 K 351. 49 K 29. 86 K Maximum Stresses in Beam Window Pre-pulse Post-pulse Stress Amplitude Helium Cooled Target 210 MPa 280 MPa 70 MPa Water Cooled Target 123 MPa 153 MPa 30 MPa 19

Conclusions • The feasibility of the target concept based on sectorized horizontal slabs is demonstrated, both for helium cooled and water cooled options at 5 MW proton beam power. Coolant Number of W Max. Post-pulse slabs temp. tensile stress Max. temp. at LOCA Helium 3 kg/s @ 6 bar 495 bare W blocks 801 K (528 C) 125 MPa < 639 C Water 99 kg/s @ 6 bar 495 Ta clad W blocks 417 K (144 C) 104 MPa < 655 C • The exothermic heat generated from the oxidation of tungsten and tantalum could reach 10 k. W at high temperatures above 700 C. • There are relatively small number of tungsten blocks in three standardized shapes. • The post pulse peak equivalent stress in the beam window is below 300 MPa both for helium cooled and water cooled options. 20

Outlook • Next steps: – – – Thermal and mechanical optimization Target vessel optimization Analysis of non-axisymmetric flux distribution Analysis of dynamic effects of the beam rastering Down to earth engineering and prototyping • Special thanks to Eric Pitcher, Per Nilsson and Thomas Mc. Manamy 21

Open discussions Thank you for your comments and feedback! 22